Depletion of the cell-cycle inhibitor p27Xic1 impairs neuronal differentiation and increases the number of ElrC+ progenitor cells in Xenopus tropicalis
نویسندگان
چکیده
The Xenopus p27(Xic1) gene encodes a cyclin dependent kinase (CDK) inhibitor of the Cip/Kip family. We have previously shown that p27(Xic1) is expressed in the cells of the neural plate as they become post-mitotic (Development 127 (2000) 1303). To investigate whether p27(Xic1) is necessary for cell cycle exit and/or neuronal differentiation, we used antisense morpholino oligos (MO) to knockdown the protein levels in vivo. For such knockdown studies, Xenopus tropicalis is a better model system than Xenopus laevis, since it has a diploid genome. Indeed, while X. laevis has two p27(Xic1) paralogs, p27(Xic1) and p28(Kix1), we have found only one ortholog in X. tropicalis, equidistant from the X. laevis genes. The X. tropicalis p27(Xic1) was expressed in a similar pattern to the X. laevis gene. Depletion of p27(Xic1) in X. tropicalis caused an increase in proliferation and a suppression of the neuronal differentiation marker, N-tubulin. At the same time, we found an increase in the expression of ElrC, a marker of cells as they undergo a transition from proliferation to differentiation. We conclude that p27(Xic1) is necessary for cells to exit the cell cycle and differentiate; in its absence, cells accumulate in a progenitor state. The expression of p27(Xic1) in the embryo is regionalised but the transcriptional regulation of p27(Xic1) is not well understood. We report the isolation of a p27(Xic1) genomic clone and we identify a 5' region capable of driving reporter gene expression specifically in the neural tube and the eye.
منابع مشابه
High neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids
Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...
متن کاملaPKC Phosphorylates p27Xic1, Providing a Mechanistic Link between Apicobasal Polarity and Cell-Cycle Control
During the development of the nervous system, apicobasally polarized stem cells are characterized by a shorter cell cycle than nonpolar progenitors, leading to a lower differentiation potential of these cells. However, how polarization might be directly linked to the kinetics of the cell cycle is not understood. Here, we report that apicobasally polarized neuroepithelial cells in Xenopus laevis...
متن کاملINHIBITION OF WNT3A DIMINISHED ANGIOGENIC DIFFERENTIATION CAPACITY OF RAT CARDIAC PROGENITOR CELLS
Background & Aims: Myocardial infarction is a leading cause of human mortality in industrialized and developing societies. Limited restorative ability of of cardiomyocytes after ischemic changes can causes extensive damage lead to prominent chronic heart failure. At present, the application of certain drugs is touted as one of the main available approaches to inhibit the spread of the lesion an...
متن کاملMesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells
Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...
متن کاملScutellarin may alleviate cognitive deficits in a mouse model of hypoxia by promoting proliferation and neuronal differentiation of neural stem cells
Objective(s): Scutellarin, a flavonoid extracted from the medicinal herb Erigeron breviscapus Hand-Mazz, protects neurons from damage and inhibits glial activation. Here we examined whether scutellarin may also protect neurons from hypoxia-induced damage. Materials and Methods: Mice were exposed to hypoxia for 7 days and then administered scutellarin (50 mg/kg/d) or vehicle for 30 days Cognitiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mechanisms of Development
دوره 120 شماره
صفحات -
تاریخ انتشار 2003